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Bias in, Bias out?
Building Fair Models from Imbalanced Data
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1] M. C. Tschantz and A. Datta. Automated experiments on ad privacy settings.
In Proceedings on Privacy -nhancing Technologies, 2015.
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Fair M1, Research

BRIEF HISTORY OfF FAIRNESS IN ML

OH, CRAP-
LOL FAIRNESS)

2] CS 294: Fairness in Machine Learning
at Berkeley, by Moritz Hardt
https://fairmlelass.github.io)
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One Goal:
Define and formalise "fair'
» Fairness metrics
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I) Individual Fairness

"Similar individuals should have
similar outcomes'

W

A model M 1s fair if it satisfies the following:

. . . . o V: set of individuals
Definition  (Lipschitz mapping). A mapping M: V — A(A) satisfies the (D, d)-Lipschitz property

e M: "model", maps
if for every x,y € V, we have o 1l
D(Mx, My) < d(x,y) (1) individuals to outcomes
i . i o _ _ d, D: metrics in input/
When D and d are clear from the context we will refer to this simply as the Lipschitz property.

ou l/p ut s pace

3|Dwork, Cynthia, et al. "Fairness through awareness."

In Proceedings of the 3rd innovations in theoretical computer science conference. ACM, 2012.



= |l) Group Fairness

L @roups>should have

Groups defined via a protected attribute A (e.g. gender, age or race).

Feature vector now becomes X = (x, ..., X, a)

A) Same distribution of outcomes per group ("statistical parity")

A model M is fair iff
PIMX)=11A=a}=P{M(X)=11A=h)}.

B) Same error rates per group ("equalized odds")

A model M is fair iff

PIM(X)=11A=0,Y=y} =P{MX)=11A=1,Y =y} fory & {0,1}.

4] Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3:

5] Barocas, S., Hardt, M. and Narayanan, A.. Fairness and Machine Learning , www, fairmlbook.org, 2019.



= III) Causal Fairness

Critera

A model is fair if it doesn’t display any unresolved discrimination:

Definition (Unresolved discrimination). A variable V' in a causal graph exhibits unresolved dis-
crimination if there exists a directed path from A to V' that is not blocked by a resolving variable
and V itself is non-resolving.
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6] Kilbertus, N., Carulla, M. R., Parascandolo, G., Hardt, M., Janzing, D., & Scholkopf, B. (2017). Avoiding discrimination through causal reasoning.

In Advances in Neural Information Processing Systems (pp. 656-666).
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Some critical notes...

context tools for analysis rather than
solutions

Goal: Operationalise ethics concepts and translate them into

formulas and code, thereby making them accessible for the

technical community to work with.
T — —
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My Research:

Data Augmentation

Data augmentation: Artificially extend datasets that are too small.
Usually done via ad hoc assumptions.

a0

Our method: Estimate good data augmentation scheme from data.
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Data Augmentation for Bias-Correction

Now: Only augment underrepresented group.

¥ upsampling

¥ more balanced dataset

# bias-correction!
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Some first results building on

7] Piotr Sapiezynski, Valentin Kassarnig, and Christo Wilson.

Academic performance prediction in a gender-imbalanced environment. 2017.
on data from

8] Arkadiusz Stopezynski, Vedran Sekara, Piotr Sapiezynski, Andrea Cuttone,
Mette My Madsen, Jakob Eg Larsen, and Sune Lehmann.

Measuring large- scale social networks with high resolution. PloS one, 2014.






